Al-Pd-Rh (Aluminum-Palladium-Rhodium)

V. Raghavan

Recently, [2006Prz] reported four partial isothermal sections for Al-rich alloys of this system at 1100, 1000, 900, and 790 °C.

Binary Systems

The Al-Pd phase diagram [2001Yur] depicts the following intermediate phases: PdAl₄ (hexagonal, space group P6₃22), PdAl₃ (denoted ε_6 , orthorhombic), ε_{28} (~PdAl₃, orthorhombic), Pd₈Al₂₁ (Pt₈Al₂₁-type tetragonal), Pd₂Al₃ (denoted δ, D513, Ni2Al3-type hexagonal), PdAl (B2-type cubic and two low-temperature forms: rhombohedral and B20-type cubic), Pd₅Al₃ (Rh₅Ge₃-type orthorhombic), Pd₂Al (C23, Co₂Si-type orthorhombic), and Pd₅Al₂ (Pd₅Ga₂-type orthorhombic). The Al-Rh phase diagram, shown in Fig. 1 [2006Kho], depicts the following intermediate phases: Rh₂Al₉ (D8_d, Co₂Al₉-type monoclinic), $Rh_{1-x}Al_3$ (orthorhombic, denoted O₁ or ε_{16}), $RhAl_3$ (orthorhombic, denoted O₂ or ε_6), Rh₂Al₅(c) (space group *Pm*3, cubic, denoted C), Rh₂Al₅(h) (D8₁₁, Co₂Al₅-type hexagonal, denoted H), Rh₃Al₇ (monoclinic, denoted V), and RhAl (B2, CsCl-type cubic). Pd and Rh form a continuous facecentered cubic (fcc) solid solution, with a miscibility gap below 845 °C [Massalski2].

Ternary Isothermal Sections

[2006Prz] melted a number of Al-rich ternary alloys in an induction furnace under Ar atm. The alloys were annealed at

1100-790 °C for 24-2610 h and quenched in water. The phase structures were studied by scanning and transmission electron microscopy and x-ray diffraction. Local composition analysis was done with electron probe microanalysis and with inductively-coupled plasma optical emission spectroscopy. Differential thermal analysis was carried out at heating/cooling rates of 10-50 °C per min.

Results of a limited number of experiments indicated a continuous solid solution between the isostructural binary compounds PdA1 and RhA1. The *ɛ*-family of orthorhombic phases exhibit the same lattice parameters along two axes and a varying parameter along the third. Metallographic examination of phases in the *\varepsilon*-range did not indicate any compositional contrast. [2006Prz] clubbed all ε variants together and labeled them as a single solid solution labeled ε. [2006Prz] found two ternary cubic phases structurally related to C. One of them denoted C₂ has a lattice parameter $a \sim 1.5483$ nm, which is approximately twice that of C. The C₂ phase occurs over a range of Pd content of 4-27 at.% and is stable in the investigated temperature range of 1100-790 °C. The melting point and the lattice parameter of C₂ decrease with the increase in Pd content. At 900 °C, another ternary phase C_3 with hexagonal parameters a = 1.0916 nm and c = 1.3386 nm appears and is structurally related to C. C₃ forms in the solid state between 925 and 831 °C, as the Pd content varies from 4 to 13 at.%.

The four isothermal sections for Al-rich alloys at 1100, 1000, 900, and 790 °C are shown in Fig. 2-5 [2006Prz]. At 1100 °C (Fig. 2), the maximum solubility of Al in (Pd,Rh)Al reaches 58 at.%. The Rh₂Al₅(c), ε , and V phases dissolve 11, 9, and 3 at.% Pd, respectively. The composition range of C₂ extends from Al₆₆Pd₄Rh₃₀ to Al₆₄Pd_{20.5}Rh_{15.5}. At 1000 °C

Fig. 1 Al-Rh phase diagram [2006Prz]

Section II: Phase Diagram Evaluations

Fig. 2 Al-Pd-Rh isothermal section at 1100 °C [2006Prz]

Fig. 3 Al-Pd-Rh isothermal section at 1000 °C [2006Prz]

(Fig. 3), the C₂ phase extends further up to 25 at.% Pd. The H, C, ε and V phases dissolve up to 2, 13, 15, and 3 at.% Pd respectively. Pd₂Al₃ (δ) is present in the ternary region. At 900 °C (Fig. 4), Rh₂Al₉ is present and dissolves up to 3.5 at.% Pd. The ε , H and V phases dissolve up to 22, 1, and 3 at.% Pd. Pd₂Al₃ (δ) extends up to the binary side and dissolves 3 at.% Rh. The maximum solubility of Al in (Pd,Rh)Al has decreased to 55 at.% [2006Prz]. At 790 °C (Fig. 5), the ε phases form a continuous solid solution. The solubility of the third component in the binary phases is about the same as at 900 °C.

Fig. 4 Al-Pd-Rh isothermal section at 900 °C [2006Prz]

Fig. 5 Al-Pd-Rh partial isothermal section at 790 °C [2006Prz]

References

- 2001Yur: M. Yurechko, A. Fattah, T. Velikanova, and B. Grushko, A Contribution to the Al-Pd Phase Diagram, J. Alloys Compd., 2001, 329, p 173-181
- 2006Kho: V.G. Khoruzhaya, K.E. Kornienko, P.S. Martsenyuk, T. Ya. Velikanova, Phase Equilibria in the System Aluminum-Rhodium, *Poroshk. Metall.*, 2006, (5-6), p 48-56 in Russian; TR: *Powder Metall. Met. Ceram.*, 2006, 45(5-6), p 251-258
- **2006Prz:** B. Przepiorzynski, B. Grushko, and M. Surowiec, An Investigation of the Al-Pd-Rh Phase Diagram Between 50 and 100 at.% Al, *Intermetallics*, 2006, **14**, p 498-504